TABLOCU SHOP

PLAZMA

PLAZMA

Plazma

Vikipedi, özgür ansiklopedi
 
 
Gezinti kısmına atla Arama kısmına atla
 
Bir plazma lambası

Plazma (Yunanca: πλάσμα, "şekillendirilebilir madde"[1]), gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim sürecine verilen genel ad.

Plazma, kimya ve fizikte iyonize olmuş sıvı anlamına gelmektedir. İyonize gaz için kullanılan plazma kelimesi 1920'li yıllardan beri fizik literatüründe yer etmeye başlamıştır. Kendine özgü niteliklere sahip olduğundan, plazma hali maddenin katı, sıvı ve gaz halinden ayrı olarak incelenir.

Katı bir cisimde cismi oluşturan moleküllerin hareketi çok azdır, moleküllerin ortalama kinetik enerjisi herhangi bir yöntemle (örneğin ısıtarak) arttırıldığında cisim ilk önce sıvıya, sonra da gaza dönüşür. Gaz fazında elektronlar gayet hızlı hareket ederler. Eğer gaz halinden sonra da ısı verilmeye devam edilirse iyonlaşma başlayabilir, bir elektron çekirdek çekiminden kurtulur ve serbest bir elektron uzayı meydana getirerek maddeye yeni bir şekil kazandırır. Atom bir elektronu eksilmiş ve net bir pozitif yüke sahip olmuş olacaktır. Yeterince ısıtılmış gaz içinde iyonlaşma defalarca tekrarlanır ve serbest elektron ve iyon bulutları oluşmaya başlar. Fakat bazı atomlar nötr kalmaya devam eder. Oluşan bu iyon, elektron ve nötr atom karışımı, plazma olarak adlandırılır.

İyonize olma durumu, en az bir elektronun atom ya da molekülden ayrıldığı anlamına gelir. Serbest elektrik yükü sayesinde plazma yüksek bir elektrik iletkenliğine kavuşur ve elektromanyetik alanlardan kolaylıkla etkilenir. Atmosferin üstünde, manyetosferde, özellikle kutuplara yakın bölgelerde görülen auroralar, güneş rüzgarından kaynaklanan yüklü parçacıklarla çarpışan oksijen atomlarının iyonize olması ile oluşurlar ve enfes görüntüler verirler.

Evren'de madde dört halde bulunur. Bunlar katı, sıvı, gaz ve plazma halidir. Mikroskobik açıdan plazma, sürekli hareket eden ve etkileşen yüklü parçacıklar topluluğu olarak ifade edilir. Plazma içinde nötr atom ya da moleküllerin olması plazma halini değiştirmez. Kimyasal reaksiyonları oldukça hızlıdır. Çünkü plazma maddenin en sıcak halidir ve elektronların çekirdek ile olan bağları zayıftır.

Plazmalar soğuk ve sıcak plazmalar olarak ayrılabilir. Yıldızlar sıcak plazmaya örnekken florasan soğuk bir plazmadır.

Bir plazma, gaz ısıtılarak veya bir lazer ya da mikrodalga jeneratörü ile uygulanan güçlü bir elektromanyetik alana tabi tutularak oluşturulabilir. Bu elektron sayısındaki düşüş ya da artışlar, iyonlar adı verilen pozitif veya negatif yüklü parçacıklar oluşturur ve eğer varsa moleküler bağların ayrışmasına eşlik eder [2].[3]

Bu yük taşıyıcılarının önemli sayıda mevcudiyeti plazmayı elektriksel olarak iletken hale getirir, böylece elektromanyetik alanlara şiddetle tepki verir. Gaz gibi plazmanın da bir kap içine konulmadıkça belirli bir şekli veya belirli bir hacmi yoktur. Gazdan farklı olarak, bir manyetik alanın etkisi altında lifler, kirişler ve çift katmanlı yapılar oluşturabilmektedir.  

Plazma sıradan maddenin evrendeki en bol şeklidir; çoğu düşük yoğunluktaki bölgelerde, özel küme içi ortamlarda ve Güneş de dahil olmak üzere yıldızlarda madde bu şekilde bulunmaktadır. Plazmaların dünyadaki yaygın şekli ışıklı reklam tabelalarında görülür.[4][5]

 Plazma ile ilgili çoğu özellik, kontrollü nükleer füzyon ve füzyon gücü ile ilgili araştırmalar sonucun bulunmuştur. Bunun nedeni plazma fiziğinin nükleer füzyonun anlaşılması için gerekli temeli sağlamasıdır.

Özellikleri ve Parametreler

 
Dünya'nın kutuplara yakın bölgelerdeki uzaya fışkırır oksijen, helyum ve hidrojen iyonları gösteren, Dünya'nın plazma çeşmesinin Sanatçı sunumu. Kuzey kutbunun yukarısında gösterilen soluk sarı alan, uzaya Dünya'dan geçmiş gazı temsil eder; atmosfere dökülen plazma enerjisi olan yeşil alan kuzey ışıklarıdır.?[6]

Tanım

Plazma, basitçe gevşek bağlı olmayan pozitif ve negatif parçacıkların elektriksel olarak nötr ortamı şeklinde tarif edilmektedir (yani bir plazmanın genel yükü yaklaşık sıfırdır). Bağlanmamış olmalarına rağmen bu parçacıkların güçlerin karşılaşması hususunda tamamen serbest olmadıklarını belirtmek önemlidir. Harekete geçtiklerinde, manyetik alanlarla elektrik akımı oluşturur, ve bunun sonucu olarak, birbirlerinin alanlarından etkilenirler. Bu onların çok serbestlik derecesiyle ortak davranışlarını yönetir. Bir tanımın üç ölçütü olabilir.[3][7]:[kaynak belirtilmeli][8][9]

  1. Plazma Yaklaşımı: Yüklü parçacıklar sadece en yakın parçacıkla etkileşimden ziyade, parçacık etkisi çok yakın yüklü parçacıklarla birbirine yeterince yakın olmalıdır (bu kolektif etkiler plazmanın ayırt edici özelliğidir). Belirli bir parçacığın etki alanı içinde yük taşıyıcılarının sayısı yüklü parçacıklarıyla (yarıçapı Debye tarama uzunluğu Debye küresi denir) toplu davranış sağlamak için birlik daha yüksek olduğunda plazma yaklaşımı geçerlidir. Debye küresinde parçacıkların ortalama sayısı plazma parametresi tarafından verilir, "Λ" (Yunan alfabesinde büyük Lambda),[ambiguous] 
  2. Toplu Etkileşimler :Debye tarama uzunluğu plazmanın fiziksel boyutuna göre kısadır. Bu kriter, plazma hacmi içinde meydana gelebilecek sınırlı etkilerin kenarlarından daha önemli olduğu anlamına gelir. Bu kriter gerçekleştiğinde, plazma yarı nötr olur.
  3. Plazma Frekansı: Elektron plazma frekansı (elektron plazma salınımlarının ölçülmesi) (elektronlar ve nötr partiküller arasındaki çarpışma sıklığının ölçülmesi) elektron çarpışma sıklığı ile karşılaştırıldığında büyüktür. Bu durum geçerli olduğu zaman, elektrostatik etkileşimler, sıradan gaz kinetik işlemlerden daha baskındır.

Değişken Parametreler

Plazma parametreleri [ambiguous] büyüklükte birçok farklı değer alabilir, ancak farklı parametreler ile plazmaların özellikleri çok benzer olabilir. Aşağıdaki grafik sadece geleneksel atom plazmalar ve kuark gluon plazmalar gibi değil, egzotik fenomeni de göz önünde bulundurur

 
Plazmaların aralığı.Yukarıda yoğunluk artar, sağa doğru sıcaklık artar. metal içindeki serbest elektronlar, elektron plazma olarak kabul edilir.[10]
Plazma parametrelerinin tipik aralıkları: büyüklük düzenleri (OOM)
Karakteristik Karasal plazmalar Evrensel Plazmalar
Boyut

metre cinsinden

10−6 m (lab plazmaları) 

102 m (yıldırım) (~8 OOM)

10−6 m (uzay aracı kılıfı) 

1025 m (galaksiler arası bulutsular) (~31 OOM)

Ömür


saniye cinsinden

10−12 s (lazer-üretilen plazma) to

107 s (flöresan ışıkları) (~19 OOM)

101 s (güneş parlamaları) 

1017 s (galaksiler arası plazma) (~16 OOM)

Yoğunluk

metreküp içindeki parçacık sayısı

107 m−3 

1032 m−3 (atalet kısıtmalı plazma)

1 m−3 (galaksiler arası ortam) to

1030 m−3 (yıldız çekirdeği)

Sıcaklık


Kelvin cinsinden

~0 K (kristal olmayan nötr plazma[11]

108 K (manyetik füzyon  plazma)

102 K (Şafak) to

107 K (güneş çekirdeği)

Manyetik alan

tesla cinsinden

10−4 T (lab plazması) 

103 T (darbeli güç plazma)

10−12 T (galaksiler arası ortam) to

1011 T (yakın nötron yıldızları)

İyonlaşma Derecesi

Plazma için, iyonizasyon gereklidir. Terim olarak "plazma yoğunluğu" genellikle "elektron yoğunluğu"nu kapsar, hacim başına serbest elektron sayısına karşılık gelir. Bir plazmanın iyonizasyon derecesi, atom oranının elektron kaybetmiş ya da kazanmış olduğu sıcaklıkla kontrol edilir. Hatta parçacıklar %1 daha az iyonize edildiğinde, kısmen iyonize gazı, plazma özelliğine sahip olabilir (yani manyetik alanlara tepki ve yüksek elektriksel iletkenlik). ). İyonlaşma derecesi, , olarak , olarak tanımlanır. iyon sayısı yoğunluğu  nötral atomlarının sayısı yoğunluğudur.Elektron yoğunluğu, iyonların ortalama şarj durumu  aracılığıyla ilişkilendirilir  elektron sayısı yoğunluğudur.

Sıcaklık

Plazma sıcaklığı genel olarak K veya elektrovoltla ölçülür ve partikül başına termal kinetik enerjinin ölçümü ile elde edilir. Çok yüksek sıcaklıklara genelde plazmanın bir tanımlayıcı özelliği olan iyonlaşmayı sürdürmek için ihtiyaç vardır. Plazma iyonlaşma derecesi iyonlaşma enerjisine göre (yoğunluğu ile daha zayıf) elektron sıcaklığı ile belirlenir, bu ilişki Saha denklemi olarak adlandırılır. Düşük sıcaklıklarda, iyonlar ve elektronlar bağlı duruma gelir -atom- ve sonunda plazma gaz haline gelme eğilimindedir.[12]

Çoğu durumda elektronlar sıcaklığı nispeten iyi tanımlanmış termal dengeye yakındır, Maxwell enerji dağıtım işlevinde önemli bir sapma olduğunda bile; örneğin, UV radyasyon, enerji yüklü parçacıkları ya da kuvvetli elektrik alanları. Kütledeki büyük farktan dolayı, iyonlar veya nötr atomlar denge haline gelene kadar elektronlar daha hızlı termodinamik dengeye gelir. Bu nedenle, iyon sıcaklığı (genellikle daha düşük) ile elektron sıcaklığı çok farklı olabilir. Bu iyonlar ortam sıcaklığına yakın, genellikle zayıf iyonize teknolojik plazmalarda yaygındır.  

Termal ve Termal Olmayan Plazmalar

Elektronlar, iyonlar ve nötrler, sıcaklıklarına göre, plazmalar "termal" ya da "termal olmayan" olarak sınıflandırılır. Termal plazmaların aynı sıcaklıkta elektron ve ağır parçacıkları var, yani birbirleri ile termal dengede bulunmaktadırlar. Öte yandan termal olmayan plazmalar, daha düşük sıcaklıkta (bazen oda sıcaklığı) elektronlar fazla "sıcak" iken iyonlar ve nötrlere sahiptir.().

Bir plazma bazen neredeyse tamamen iyonlaşmışsa "sıcak" veya gaz moleküllerinin (örneğin %1) yalnızca küçük bir bölümü iyonlaşmışsa "soğuk" diye adlandırılır, ancak "sıcak plazmanın" ve "soğuk plazmanın" diğer tanımları yaygındır. Hatta bir "soğuk" plazmada elektron sıcaklığı tipik olarak birkaç santigrat derecedir. "Plazma teknolojisi" ("teknolojik plazmalar") olarak kullanılan plazmalar genellikle gaz moleküllerinin sadece küçük bir kısmının iyonlaşması anlamında soğuk plazmalardır.  

Plazma Potansiyeli

 
Yıldırım, yeryüzündeki mevcut plazma örneğidir. Tipik olarak, yıldırım, 100 milyon voltta 30.000 amper boşaltır[13].Yıldırımdaki plazma sıcaklıkları 28.000 K (28.000 °C; 50.000 °F) yaklaşır ve elektron yoğunlukları aşabilir 1024 m−3.

Plazmalar çok iyi elektrik iletkenleri olduğundan, elektrik potansiyelleri önemli bir rol oynamaktadır. Potansiyel yüklü parçacıklar arasındaki boşlukta ortalama var olan bağımsız potansiyele "plazma potansiyeli" veya "uzay potansiyeli" denir. Eğer bir elektrot plazma içine takılırsa, potansiyeli nedeniyle genellikle Debye kılıf denir ve plazma potansiyelin altında önemli ölçüde yalan olur. Plazmaların iyi elektrik iletkenliği onların elektrik alanlarını çok küçük hale getirir. Bu negatif yük yoğunluğu plazmanın (), büyük miktarlarda üzerindeki pozitif yüklerin eşit olduğunu söyleyen "sözde tarafsızlık" kavramı ile sonuçlanır, fakat ölçekte Debye uzunluğu dengesizliği şarj edilebilir. Bu özel durumda çift tabaka oluşturulmaktadır, yük ayırmada Debye uzunlukları onlarca uzayabilir. 

Potansiyelleri ve elektrik alanlarının büyüklüğü sadece net yoğunluğunu bulmak için başka yollarla tespit edilmelidir. Genel bir örnek, Boltzmann elektronlar arasındaki bağlantıyı karşıladığını farz etmiştir:  

Bu elektrik alanındaki yoğunluğu hesaplamanın bir diğer yolu:

Yarı nötr olmayan bir plazma üretmek mümkündür. Örneğin, bu elektron ışınında sadece negatif yük vardır. Bir nötr olmayan plazmanın yoğunluğu genellikle çok düşük olmalıdır, ya da çok küçük olmalıdır, aksi takdirde itici elektrostatik kuvvet tarafından harcanmış olur.  

Astrofizik plazmalardaki Debye taraması doğrudan üzerindeki plazmayı etkileyen alanları etkiler, yani Debye uzunluğundan daha büyük mesafeleri. Ancak, yüklü parçacıkların varlığı plazma oluşturmaya neden olur ve manyetik alandan etkilenebilir. Bu ve bu tür plazma çift tabakaların nesli olarak son derece karmaşık davranışlara neden olabilir, amacı Debye uzunlukları üzerindeki yükü ayırmak olan. Dış ve kendinden oluşturulan manyetik alanlar ile etkileşen plazmaların dinamikleri manyeto hidro dinamiklerinin akademik disipliniyle incelenir.  

Mıknatıslama

Yüklü parçacıkların hareketini etkilemek için yeterince güçlü manyetik alan plazmanın mıknatıslandığı söylenebilir. Ortak bir nicel kriter ortalama bir parçacık bir çarpışma yapmadan önce manyetik alan etrafında en az bir dönüş tamamlar, yani , , "elektron dönme frekansı" dır ve i"elektron çarpışma hızı" dır. Genellikle iyonlar yokken elektronların mıknatıslanması durumudur. Anizotropik olan manyetize plazmaların, manyetik alana paralel yönde ona dik olan ayırıcı özellikleri vardır. Plazmalardaki elektrik alanlar yüksek iletkenlikleri genellikle küçük olsa da, manyetik alanda hareket eden bir plazma ile bağlantılı elektrik alan  (  elektrik alanı,  hız, ve  manyetik alan), tarafından verilmiş ve Debye koruyucuyu etkilemez[14]

Plazma ve Gaz Fazların Karşılaştırılması

Plazma genellikle katı, sıvı ve gazlardan sonra maddenin dördüncü hali olarak adlandırılır.[15][16] Bunlardan ve maddenin diğer düşük enerji durumlarından ayrıdır. Yakından da kesin bir biçim veya hacme sahip olmaması ile gaz fazıyla benzer olmasına rağmen, aşağıdakiler de dahil birçok yolla farklılık gösterir:

Özellik Gaz Plazma
Elektriksel iletkenlik Çok düşük: Hava mükemmel bir yalıtkandır ta ki santimetre başına 30 kilovolt üstünde elektrik alan şiddetleri deki plazma içine bozulur.[17] Genellikle çok yüksek: Birçok amaç için, plazma iletkenliği, sonsuz olarak kabul edilebilir.
Bağımsız olarak türlerin davranışı Bir: benzer bir şekilde davranan tüm gaz parçacıkları, yer çekiminden ve birbirleriyle çarpışmalarından etkilenir. iki veya üç: Elektronlar, iyonlar, proton ve nötronlar, onların yükünün işareti ve değeri ile ayırt edilebilir bu yüzden onlar, farklı kütlelerin sıcaklıkları ve hızları ile, birçok durumda bağımsız davranır, dalgalar ve istikrarsızlıkların yeni tipi gibi.
Hız dağılımı Maxwell: Çarpışmalar, çok az nispeten hızlı parçacıkları ile genellikle tüm gaz parçacıklarının bir Maxwell hız dağılımına yol açar. Genellikle Maxwell olmayan: Çarpışma etkileşimleri genellikle sıcak plazmalardaki zayıflıklardır ve and dış kuvvet, yerel denge den uzak plazmayı sürebilir ve normalden hızlı parçacıkların önemli bir nüfusuna yol açar.
Etkileşimler Çift: İki parçacık çarpışmaları kuraldır, üç-cisim çarpışmalar son derece nadirdir. Toplu: Dalgalar, veya plazma organize hareketleri çok önelidir çünkü parçacıklar, elektrik ve manyetik kuvvetler aracılığıyla uzun mesafelerde iletişim kurabilir.

Ortak Plazmalar

Plazmalar kütlece ve hacimce evrende sıradan maddeden uzak en yaygın fazdır.[18] Esasen, yıldızlardan gelen uzaydan görünür ışıkta görünür dalga boyu aralığında, kuvvetli bir sıcaklığa sahip plazmalar bulunmaktadır. Evrendeki sıradan (veya baryonik) maddenin çoğu, X-ışınları gibi ışık saçar galaksiler arası ortamda bulunan plazmalar gibi, ama daha sıcak.  

Hannes Alfvén 1937 yılında, plazma evrene yayılırsa galaksi ile ilgili manyetik alan üretme kapasitesine sahip elektrik akımlarını taşıyabileceğini savundu. Nobel Ödülü'nü kazandıktan sonra şunları vurguladı.[19] 

"Belirli bir plazma alanında olayları anlamak için gerekli olan tek yol manyetik değil, elektrik alanı ve elektrik akımını eşlemek gerekir. Uzay büyük veya çok büyük mesafelerde enerji ve momentum transferi akıntı şebekesi ile doludur. Akımlar genellikle lif veya yüzey akımlarıdır. İkincisi de hücresel yapı olarak yıldızlararası ve galaksiler arası uzaya yer vermek olasıdır."[20]

Buna karşılık mevcut bilimsel konsensüse göre evrendeki toplam enerji yoğunluğu yaklaşık %96 plazma ya da sıradan maddeden başka bir biçimde, ama soğuk karanlık madde ve karanlık enerji kombinasyonudur. Güneş ve tüm yıldızlar, plazma ile dolu yıldızlararası uzayda ve galaksiler arası uzayda da plazma yapabilir. Doğrudan görünmez karadeliklerin bile iyonize madde artışı tarafından körüklendiği düşünülmektedir [21] ve aydınlık püskürtülen plazma astrofizik jetleri ile ilişkilidir, mesela M87 adlı jet 5000 ışık yılı uzanır,[22],[23]

Güneş sistemimizde, gezegenler arası uzay Güneş Sistemi dışında Güneş'ten uzanan Güneş Rüzgâr plazma ile doludur. Ancak, sıradan maddenin yoğunluğunun ortalaması karanlık madde veya karanlık enerjiye göre çok daha yüksektir. Plazma olmayan Jüpiter gezegeni hesapları, Plüton’un yörüngesi içinde hacmi ve kütlesi yaklaşık %0.1'dir.  

Sırayla onlar plazma çok ağır negatif iyon bileşeni gibi hareket edebilir, böylece bir plazma içindeki toz ve küçük taneler de net bir negatif yükü bulur (bknz. tozlu plazmalar).  

Plazmanın ortak şekilleri
Yapay üretim Karasal plazmalar Uzay ve astrofizik plazmalar